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Abstract. We study a dynamical scheme for condensation of bosonic trapped gases beyond the Lamb-Dicke
limit, when the photon-recoil energy is larger than the energy spacing of the trap. Using quantum master
equation formalism we demonstrate that dark-state cooling methods similar to those designed for a single
trapped atom allow for the condensation of a collection of bosons into a single state of the trap, either the
ground, or an excited state. By means of Monte-Carlo simulations we analyse the condensation dynamics
for different dimensions, and for different cooling schemes.

PACS. 03.75.Fi Phase coherent atomic ensembles; quantum condensation phenomena – 32.80.Pj Optical
cooling of atoms; trapping – 42.50.Vk Mechanical effects of light on atoms, molecules, electrons, and ions

1 Introduction

During the last years the combination of laser-cooling
techniques [1] and evaporative [2] or sympathetic cool-
ing [3] has led to the experimental achievement of one of
the most pursued goals of quantum physics since its early
days, i.e. the Bose-Einstein condensation (BEC). How-
ever, the question whether BEC is attainable by using all-
optical means still remains open, and several experimental
groups are investigating this challenging possibility [4–6].

Laser cooling techniques, as Velocity Selective Coher-
ent Population Trapping (VSCPT) [7] or Raman cooling
[8], have been designed to cool atomic samples up to frac-
tions of the recoil energy, ER = ~ωR = ~2k2

L/2M , where
kL is the laser wavevector and M is the atomic mass. The
subrecoil laser cooling methods are based on the very im-
portant idea of dark states [9]. These states cannot absorb
the laser light, but can receive population via incoher-
ent pumping, i.e. via spontaneous emission, and therefore
these states behave as trapping states. Already designed
subrecoil laser cooling techniques should, in principle, lead
to the condensation, because in traps of realistic size, i.e.
larger than k−1

L , the temperatures needed to achieve con-
densation are only slightly below, or of the order of ER.
However, light reabsorption becomes an important diffi-
culty when applying dark-state cooling techniques for high
density gases. The dark states, although dark with re-
spect to the laser light, are unfortunately not dark with
respect to the photons spontaneously emitted by other
atoms, and therefore multiple reabsorptions can increase
the system energy by several recoil energies per atom
[10–13]. Thus, dark-state techniques cease to work
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properly at high densities. In particular, laser induced con-
densation is feasible only if the reabsorbtion probability
is smaller than the inverse of the number of motional en-
ergy levels accessible via the spontaneous emission pro-
cesses [11].

The problem of reabsorption has aroused great interest
in the last years, and several remedies have been recently
suggested. It is easy to understand that assuming that the
reabsorption cross section for trapped atoms is the same
as in free space, i.e. ' 1/k2

L, the reabsorptions should not
cause any problem in one dimension, have to be carefully
considered in two dimensions, and forbid condensation in
three dimensions. Therefore, as the significance of reab-
sorptions increases with the dimensionality, working with
quasi-one- or two-dimensional systems has been proposed
as a possible way to reduce the role of reabsorptions. Other
suggestion consists in using a strongly confining trap with
a frequency ω ' ωR. In this case, as demonstrated in ref-
erence [14] for the case of two atom system, the relative
role of reabsorption in such a trap can be significantly re-
duced. It is, however, not clear whether this result would
hold for many atom systems. Perhaps the most promising
remedy against the reabsorption problem, however, em-
ploys the dependence of the reabsorption probability for
trapped atoms on the fluorescence rate γ, which can be
adjusted at will in dark state cooling [15]. In particular, in
the, so called, Festina Lente limit, when γ is much smaller
than the trap frequency ω [16], the reabsorption processes,
in which the atoms change energy and undergo heating,
are practically completely suppressed.

In a recent paper [17], following the ideas of refer-
ence [18] we have proposed a cooling mechanism (which
we have called Dynamical Cooling) which allows for con-
fining of a single trapped atom in one level of the trap,
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either the ground or an excited level. The confinement is
possible beyond the Lamb-Dicke limit, that is when ER >
~ω. The latter condition requires that the so-called Lamb-
Dicke parameter η = kLa0 > 1 (where a0 =

√
(~/2Mω)

is the size of the ground state of the trap). This cooling
method is possible because under certain circumstances
a particular level of the trap can become a dark-state.
We have proposed in [17] two different dark-state mecha-
nisms, one based on the properties of the Franck-Condon
factors and the other one (which appears in dimensions
higher than one), based on the destructive interference of
the amplitudes of absorption of two lasers in orthogonal
directions. Dynamical cooling consists in the use of se-
quences of pulses of different frequencies in such a way that
only a desired dark state remains unemptied (dark) dur-
ing the process, and therefore the population is pumped
into this particular level. Typically the use of dark-state
(fine-cooling) pulse is not sufficient to achieve the perfect
cooling; one has also to use confining pulses (which confine
the atomic population to energies of the order of recoil en-
ergy), pseudo-confining pulses and auxiliary pulses (that
empty the undesired dark states if such appear) (for de-
tails see Refs. [17,18]).

In a recent letter [19] we have extended the Dynami-
cal Cooling scheme for the case of N bosonic atoms in the
trap. We have presented there a somewhat different cool-
ing scheme than in reference [17] in which the absorption
and spontaneous emission processes are considered sepa-
rately and consecutively, instead of simultaneously as in
reference [17]. We have demonstrated that for this model
the condensation is possible, and faster and more robust
than in the one-atom case.

The aim of this paper is to extend the results of ref-
erence [17] to the case in which many atoms are trapped,
and also to present in more detail the cooling scheme of
reference [19]. The structure of the paper is as follows. In
Section 2 we present the Master Equation (ME) which de-
scribes the cooling dynamics for the same cooling scheme
as that of reference [17], but with many atoms in the
trap. In Section 3 we employ adiabatic elimination tech-
niques to obtain a set of rate equations describing level
population dynamics, and discuss the quantum-statistical
terms appearing in the rates. In Section 4 we solve the
rate equations using Monte-Carlo simulations, and study
the condensation dynamics into the ground state and into
an excited state of the trap in one and two dimensions.
In Section 5 the second laser cooling scheme of [19] is
presented in detail, and the ME which describes the pro-
cess is described. In Section 6 we present tridimensional
Monte-Carlo simulations of the condensation dynamics for
this second model. We finalize in Section 7 with some con-
clusions.

2 Master equation

We assume in this section the same atomic model as that
presented in [17], i.e. a three-level Λ-system, composed
of a ground-state level |g〉, a metastable state |e〉 and an

auxiliary third rapidly-decaying state |r〉. Two lasers ex-
cite coherently the resonant Raman transition |g〉 → |e〉
(with some associated effective Rabi frequency Ω), while
a repumping laser in or off-resonance with the transition
|g〉 → |r〉 pumps optically the atom into |g〉. With this
three level scheme, one obtains an effective two-level sys-
tem with an effective spontaneous emission rate γ, which
can be controlled by varying the intensity, or the detuning
of the repumping laser [20].

The main difference respect to [17] is that in this paper
we will deal with N identical two-level bosons in the trap,
instead of just one. Since even in very dense atomic sys-
tems in traps, typical interatomic distances are very large
compared with the typical electromagnetic wavefunction
size (∼ Bohr radius r0 ' 5×10−11 m), and since the wave-
length of the photons involved in atom-field interaction
satisfies λ� r0, then the atoms keep their bosonic identity
in the course of dynamics, and their interaction with pho-
tons can be described using the dipole approximation. In
order to take into account the quantum-statistical effects
which appear in the bosonic collectivity, we need to treat
the atoms in second-quantization formalism. We use the
approach of “Quantum Field Theory of Atoms and Pho-
tons” developed in references [21,22] to describe quantum-
statistical systems of cooled and trapped atoms undergo-
ing spontaneous and stimulated emission processes. This
theory is in fact quite general, and has been developed also
for multicondensate and fermion systems, and for various
cases and gauges. We use this theory to write down the ap-
propriate Hamiltonian of the system in question, and to
derive the quantum master equation, describing system
dynamics after elimination of the electrodynamic degrees
of freedom.

In the following we will neglect the atom-atom interac-
tions, i.e. we will work in the so-called Ideal-Gas Approx-
imation. In principle this approximation implies that we
should deal with a small number of particles and/or large
traps. However, the s-wave scattering length a (which gov-
erns the atom-atom interactions at low energies) can be
externally modified [23] by using a magnetic field, and in
principle a can be made very close to zero, allowing the
strict validity of the ideal gas approximation. We return
to this point in Section 7.

Hereafter we consider ~ = c = 1 for simplicity, and
follow approximately the notation of [24]. Let us introduce
the annihilation and creation operators of atoms in the
ground (excited) state and in the trap level m (l), which
we will call gm, g†m (el, e

†
l ). These operators fulfill the

bosonic commutation relations:

[gm, g
†
m′ ] = δm,m′ , (1a)

[el, e
†
l′ ] = δl,l′ . (1b)

We use standard quantum-stochastic methods [25–27] to
derive the quantum Master Equation (ME) which de-
scribes the atomic dynamics (see Appendix A). After trac-
ing over the vacuum electromagnetic modes and under the
Born-Markov approximation, the dynamics of the density
matrix ρ of the bosonic system is more conveniently de-
scribed in the interaction picture with respect to the free
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atomic Hamiltonian,

Ĥa =
∑
m

ωg
mg
†
mgm +

∑
l

(ωe
l + ω0)e†l el, (2)

where the energies of the ground (excited) trap levels
are given by ωg

m (ωe
l ). The transition energy between the

ground and excited state is given by ω0. We assume that
the center-of-mass potentials for ground and excited atoms
can be well approximated by harmonic potentials of fre-
quencies ωg and ωe, so that ωg

m = ωgm and ωe
l = ωel.

We assume γ < ωg, ωe, i.e. we are in the Festina-Lente
limit. In this limit rotation-wave approximation (RWA)
with respect to trap frequencies will hold. In order to ex-
ploit fully the Festina Lente limit, however, it is necessary
to assure that the equality of the transition frequencies
ωe
l − ωg

m = ωe
l′ − ω

g
m′ implies m = m′ and l = l′. This can

be achieved in two ways: (i) one can consider ωg = ωe = ω
but introduce a small anharmonicity in the ground state
potential, so that ωg

m = ωm + ωαm2, with α� 1. In this
case γ must be smaller than αω [28]; (ii) other possibil-
ity employs two incommensurable frequencies ωg 6= ωe. In
this case γ has to be smaller than |ωe − ωg|. This second
possibility is easy to realise in magnetic and optical traps.
Both mentioned conditions assure that there are strictly
speaking no degenerated transition frequencies. In both
cases there may occur quasi-degeneracies, but they will
typically happen for large l, l′,m,m′ and will not play sig-
nificant role in the dynamics. Obviously the above consid-
erations can be extended to higher dimensions, where we
replace the quantum number m, l, by the corresponding
pairs, or triples of quantum numbers. In higher dimensions
it is recommended to use asymmetric harmonic potentials,
with incommensurable frequencies in all directions [15].

The quantum master equation takes the following
form:

˙̃ρ(t)=−i[H̃las(t), ρ̃(t)]+γ
∑

m,m′,l,l′

ei(∆lm−∆l′m′)tξlmm′l′(ω0)

× [2g̃†m′ ẽl′ ρ̃(t)ẽ†l g̃m − ẽ
†
l g̃mg̃

†
m′ ẽl′ ρ̃(t)− ρ̃(t)ẽ

†
l g̃mg̃

†
m′ ẽl′ ]

− i
∑

m,m′,l,l′

∆lmm′l′ei(∆lm−∆l′m′)t[ẽ†mg̃lg̃
†
l′ g̃
†
l′ ẽm′ , ρ̃(t)],

(3)

with

ξlmm′l′(k) =
∫

dφdθ sin θW(θ, φ)ηlm(k)η∗l′m′(k), (4)

∆lmm′l′ =
γ

π
P
∫ ∞
−∞

du
u3

u− 1
ξ∗lmm′l′(uω0), (5)

where ηlm(k) = 〈e, l|eik·r|g,m〉 are the Franck-Condon
factors,W(θ, φ) is the fluorescence dipole pattern, ∆lm =
ωe
l − ωg

m, and 2γ is the single-atom spontaneous emis-
sion rate. Note that for standard dipole transitions γ =
(d2ω3

0)/(16ε0π2), where d is the dipole matrix element of
the corresponding transition. For the spontaneous Raman
transition from the level |g〉 to |e〉 via |r〉, the effective

γ ∝ γreΩ
2
gr/(∆

2
gr + γ2

re), where 2γre is the spontaneous
emission rate from |r〉 to |e〉, while Ωgr and ∆gr denote
the laser Rabi frequency and detuning of the transition
|g〉 → |r〉, respectively. In equation (5) P indicates the
Cauchy Principal Part of the integral, and finally

H̃las =
Ω

2

∑
l,m

ηlm(kL)e−i(δ−(ωe
l−ωg

m))tẽ†l g̃m + h.c., (6)

is the atom-laser interaction Hamiltonian in the interac-
tion picture with Ĥa.

Writing the ME in the frame rotating with the laser
frequency:

ρ̇(t)=−i[Ĥa+Ĥlas+
∑
ll′

∆lmml′e
†
l el′+Ĥdip, ρ(t)]+Lρ(t)

(7)

where:

Ĥa =
∑
m

ωg
mg
†
mgm +

∑
l

(ωe
l − δ)e

†
l el, (8)

Ĥlas =
Ω

2

∑
l,m

ηlm(kL)e†l gm + h.c., (9)

Ĥdip =
∑

m,m′,l,l′

∆lmm′l′e
†
l g
†
m′gmel′ , (10)

Lρ(t) = γ
∑

m,m′,l,l′

ξlmm′l′(ω0)[2g†m′el′ρ(t)e†l gm

−e†l gmg
†
m′el′ρ(t)− ρ(t)e†l gmg

†
m′el′ ]. (11)

Using the fact that we consider Festina Lente limit we can
apply RWA, and neglect the terms such that∆ml 6= ∆m′l′ .
Moreover, due to the assumed form of the ground and ex-
cited state potentials (see the discussion after Eq. (2)), in
the RWA only the terms with m = m′, l = l′ survive.
Neglecting Ĥdip which describes the dipole-dipole interac-
tions between ground and excited atoms, and absorbing
the single-atom Lamb-shift

∑
l∆lmmle

†
l el into ω0, we fi-

nally obtain:

ρ̇(t) = −iĤeffρ(t) + iρ(t)Ĥ†eff + J ρ(t)− i[Ĥlas, ρ(t)],
(12)

where the effective (non-Hermitian) Hamiltonian is of the
form:

Ĥeff =Ĥa−iγ
∫

dφdθ sin θW(θ, φ)
∑
l,m

|ηlm(k)|2e†l gmg†mel,

(13)

and the jump superoperator is:

J ρ(t) = 2γ
∫

dφdθ sin θW(θ, φ)

×
∑
l,m

[η∗lm(k)g†mel]ρ(t)[ηlm(k)e†l gm]. (14)

One should stress here that the neglection of Ĥdip is
strictly speaking possible when the optical parameter
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n/k3 < 1 (where n is the atomic density). When n/k3 ' 1,
both Ĥdip, and the two-atom part of Ĥeff are of the same
order. It is worth stressing that the contribution of Ĥdip

cancels exactly in the second kind of master equation dis-
cussed in Section 5. Neglection of Ĥdip permits thus a
more direct comparison of the models, and therefore in
most of the calculations of Section 4 we will thus neglect
Ĥdip. Nevertheless, in order to illustrate possible effects
of Ĥdip we shall present in Section 4 some numerical re-
sults including Ĥdip term. Within the RWA the inclusion
of Ĥdip (as a real part of Ĥeff) is straightforward, but tech-
nically complicated because it involves the calculation of
the Cauchy principal parts of the integrals for the matrix
elements ∆lmm′l′ .

One should note that the master equation in the Fes-
tina Lente limit has a quite different form than master
equations obtained beyond that limit. In particular, in
the considered limit, and for an ideal gas, there is no need
to treat the master equation self-consistently. This is a
big difference in comparison to Hartree-Fock treatments
developed by Meystre’s group (see for instance Ref. [29])
to describe nonlinear atom optics and atom laser. In this
sense Festina Lente limit provides very essential simpli-
fications. In particular, in our case no modifications of
the ground state wave function due to dipole-dipole in-
teractions are expected to occur. Festina Lente limit is
the limit of weak electromagnetic interactions (γ � ω),
which can be achieved either for forbidden transitions, or
for far detuned Raman transitions. Within the RWA im-
plied by Festina Lente limit ground state wave function is
not modified. The corrections appear first in higher orders
of the Festina Lente expansion parameters. Moreover, in
order to have such corrections, the laser should partially
excite a large number of atoms. As we shall see in the next
section this is not the case in our scheme.

3 Adiabatic elimination of the excited state.
Rate equations

In the regime of parameters considered, most of the atoms
are in the ground state during the dynamics. In particular
the system is characterized by two different time scales: a
slow one, given by the commutator with Ĥlas in the RHS
of equation (12), and the faster one given by the rest of the
RHS. Thanks to this time-scale separation we can use adi-
abatic elimination techniques to remove the excited-state
populations. By using standard Projection Operator tech-
niques it is possible to show that the adiabatic elimination
of the excited state levels leads to a set of rate equations
for the populations Nm of each level of the ground-state
trap:

Ṅn =
∑
m

Γn←mNm −
∑
m

Γm←nNn, (15)

where the rates of populating level |n〉 by transitions from
the level |m〉 are of the form:

Γn←m =
Ω2

2γ

∫ 2π

0

dφ
∫ π

0

dθW(θ, φ)

×
∣∣∣∣∣∑
l

γη∗ln(k)ηlm(kL)
[δ − ω(l −m)] + iγRml

∣∣∣∣∣
2

(Nn + 1− δn,m). (16)

In the above expressions we have approximated the ex-
cited and ground potentials by identical isotropic har-
monic potentials of frequency ω, and denoted

Rml =
∫ 2π

0

dφ
∫ π

0

dθW(θ, φ)

×
∑
n′

|ηln′(k)|2(Nn′ + 1− δn′,m). (17)

In the above expressions δn,m denotes a Kronecker delta,
and physically accounts for the fact that an autotransition
from n to n can also occur, but its probability is propor-
tional to the occupation of the final state Nn, rather than
to Nn + 1 which is characteristic for m to n transitions
with m 6= n.

Note that the rates (16) and the single-atom ones of
reference [17] are quite different. In the single-atom case,
the rates (16) coincide with those of reference [17] as they
should, but for the many-atom case, the rates (16) be-
come nonlinear, due to their dependence on the number
of atoms in each trap level. In particular, two different
quantum-statistical contributions can be noticed:

• in the denominator of the rates, the spontaneous emis-
sion acquires a collective character (similar as that ob-
served in superradiance [30]). That, of course, implies
that the validity of the Festina Lente limit requires
that the collective rates are smaller than the trap fre-
quency;
• in the numerator of the rates, the bosonic-

enhancement factor (Nn + 1− δn,m) appears.

The contribution of the bosonic-enhancement factor is
quite interesting since it favors the condensation of atoms
into just one level of the trap. The reason is that if we
are able to pump a significant amount of atoms into one
single level |n〉, subsequent transitions into |n〉 are more
and more probable.

The contribution of the collective spontaneous emis-
sion is unfortunately not so advantageous. The cooling
methods designed for the single-atom case, which we want
to apply in the many-atom case, are based on resonant
processes, and are therefore quite dependent on a nar-
row resonance. Note that the width of the resonance cen-
tered at δ = ω(l −m) is given by γRml. If γRml grows,
then the resonance is broadened, and the dark-state effects
could cease to exist. On the other hand, as Rml grows, the
height of the resonance becomes lower, and consequently
the cooling becomes slower.

These negative effects can be avoided by using a
sufficiently small γ. In the following we will consider
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γ = 0.005ω in all the calculations, which guarantees in
the worst case (one-dimensional calculations) that only
the resonant terms are relevant. We will show in the next
section that the negative effects are less important for
higher dimensions. Note, however, that the decreasing of
γ makes also the cooling slower. For some of the follow-
ing examples, the choice of γ leads to very large cooling
times (larger than 20 seconds for sodium atoms). This
technical problem, however, can be eventually solved by
decreasing gradually γ during the cooling process, in such
a way that the maximum effective collective spontaneous
emission rate remains approximately constant. Such opti-
mization would increase the cooling rate, allowing realistic
cooling times.

4 Results

In the following we simulate numerically rate equa-
tions (15) using standard Monte-Carlo methods. We will
consider in this section the case of N = 500 atoms, and,
if otherwise not indicated, the value η = 3.00. All of the
calculations in this section have been performed with 20
energy shells (i.e. 20 levels in one dimension, and 231 lev-
els in two dimensions). In several cases we have also per-
formed the calculations with 30 energy shells, obtaining
essentially the same results as for the case of 20 shells. It
is easy to observe from the form of the rates (16), and fol-
lowing the same arguments as those used in [17], that as in
the single-atom case two different dark-state mechanisms
can be designed:

• “Franck-Condon”-dark-states. Let us assume a laser
pulse with detuning δ = sω respect to the atomic tran-
sition, where s is an integer number. It can be easily
proved [17] that a particular level of the trap |m〉 re-
mains unemptied (dark) if the Franck-Condon factor
〈m + s| exp(ikx)|m〉 vanishes. From the form of such
factors, it is easy to demonstrate that the dark-state
conditions for m = 1 and m = 2 are, respectively,

η2 = s+ 1, (18)

η2 = (s+ 2)(1± (s+ 2)−1/2); (19)

• “interference”-dark-states. This dark-state mechanism
is characteristic for dimensions higher than one. Let
us assume the two-dimensional problem, in which we
have two orthogonal lasers characterised by two dif-
ferent Rabi frequencies: Ω in direction x, and AΩ in
direction y. The complex factor A indicates a possi-
ble difference between the intensities and/or phases of
both lasers, and can be used to develop a dark-state
mechanism. If the laser detuning is zero, selecting a
particular two-dimensional state |m0

x,m
0
y〉, and choos-

ing the value A = −〈m0
x|eikx|m0

x〉/〈m0
y|eiky |m0

y〉, it can
be proved that the selected level remains dark respect
to the laser pulse [17].

We will use these dark-state mechanisms to obtain con-
densation not only into the ground state, but also into an
excited state of the trap.
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Fig. 1. Population dynamics of n = 0 and n = 1, using a
sequence of pulses of detunings s = −9, 0, −10, 1, all of them
with duration 2γ/Ω2. The Lamb-Dicke parameter is η = 3.
The initial distribution is thermal with mean 〈n〉 = 6. In (a)
N = 1 is considered whereas in (b) the case of N = 500 atoms
is depicted.

4.1 Ground state cooling

Let us first analyse the one-dimensional case, i.e. the con-
densation into n = 0. In Figure 1 we use a sequence of
pulses with detunings δ = sω, s = −9, 0, −10, 1, and all
of them with the duration T = 2γ/Ω2. Pulses 1 and 3 are
confining pulses, and 2 and 4 are fine-cooling pulses [17].
Figure 1a shows the dynamics for N = 1 for n = 0 and
1, whereas Figure 1b shows the case of 500 atoms. Two
aspects become clear:

• for this particular sequence, cooling is more effective
(' 100%) in the many-atom rather than in the single-
atom case (' 80%);
• levels n = 0 and n = 1 compete in the many atom

case. This is due to two facts: first, the level n = 1
is not efficiently emptied, because the Lamb-Dicke pa-
rameter is quite large [18]; second, the non-linearity
tends to populate initially also the level n = 1, due
to its initially large population. Therefore we observe
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Fig. 2. Population dynamics of n = 0 using a sequence of
pulses of detunings s = −9, 0, −10, −1, all of them with dura-
tion 2γ/Ω2. The Lamb-Dicke parameter is η = 3. The initial
distribution is thermal with mean 〈n〉 = 6. The cases with and
without considering the dipole-dipole shift are depicted.

that the population of n = 1 survives during quite a
long time, being slowly transferred into n = 0.

In Figure 2 we have included the effects of Ĥdip as
discussed in Section 2. We consider the same sequence of
pulses as in Figure 1. The inclusion of the dipole-dipole
term clearly slows the one-dimensional condensation. The
reason is clear, because the detuning in equation (16) must
be substituted by:

δeff = δ − γSml, (20)

where

Sml=
∑
n′

[
1
π

P
∫ ∞
−∞

du
u3

u−1
ξ∗lmml(uω0)

]
(Nn′+1−δm,n′),

(21)

and therefore the detuning changes during the condensa-
tion process, moving apart from the proper detuning val-
ues. Nevertheless the condensation is still effective (almost
100%).

Let us analyse now the two-dimensional case, i.e. the
condensation into (0, 0). Let us use the sequence s = −18,
−9,−4, 0,−19,−10,−5,−1. For all the pulses we consider
a duration T = 2γ/Ω2. Pulses 1 and 5 are confinement
pulses. Pulse 4 is the dark-state pulse (if A = −1). Pulse
8 is the Sideband Cooling pulse. Pulses 2, 3, 6 and 7 are
pseudo-confinement pulses [17]. Remember that A denotes
the relation between the amplitude of the laser in direction
y and the laser in direction x. In Figure 3 we analyse the
cases of A = −1 and A = 1 for N = 500 (Fig. 3a) and
N = 1 (Fig. 3b). Note that

• the case of A = 1 for which the single atom cooling is
inefficient, becomes quite efficient for 500 atoms, basi-
cally due to the bosonic-enhancement;
• unfortunately, the bosonic enhancement does not act

only in a positive sense. Note that for A = −1, pulse 4
is not only a dark-state pulse for the state (0, 0), but
also for any state (m,m), and in particular for (1, 1).
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Fig. 3. Population dynamics of (0, 0), using a sequence of
pulses of detunings s = −18, −9, −4, 0, −19, −10, −5, −1, all
of them with duration 2γ/Ω2. The Lamb-Dicke parameter is
η = 3. The initial distribution is thermal with mean 〈n〉 = 6.
In (a) the case of N = 500 is depicted for the case in which all
the pulses are considered with A = −1, and A = 1. In (b) the
same case as in (a) is presented, but for N = 1. N = 1 and
N = 500 are compared.

Also pulse 8 is not efficient enough to empty (1, 1)
for the considered Lamb-Dicke parameter η = 3 [18].
Therefore, (1, 1) is very slowly transferred to (0, 0), and
in fact increases its population during the early stages
of the cooling process. This slows the condensation into
(1, 1), and, in fact, the condensation for A = −1 is
not faster than for A = 1. In fact, the latter is more
efficient, because although (0, 0) is not a dark-state,
(1, 1) is not too, and the bosonic enhancement favors
the condensation into (0, 0) more clearly than for A =
−1. This is one example of a cooling scheme which is
efficient for N = 500 and not for N = 1;
• for the two dimensional case the negative effects of

collective spontaneous emission and statistical change
of the detuning are negligible. We explain this in more
detail in Section 4.2
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Fig. 4. Population dynamics of n = 0 and n = 1, using a
sequence of pulses of detunings s = −9, 8, −10, −3, all of them
with duration 2γ/Ω2. The Lamb-Dicke parameter is η = 3.
The initial distribution is thermal with mean 〈n〉 = 6. In (a)
N = 1 is considered whereas in (b) the case of N = 500 atoms
is depicted.

4.2 Excited-state cooling

As the first example of excited-state cooling let us consider
the one-dimensional case of the condensation into n = 1.
We use the sequence s = −9, 8, −10, −3, all of them with
a duration T = 2γ/Ω2. Pulses 1 and 3 are confinement
pulses, pulse 2 fulfills equation (18), and is therefore the
dark-state pulse for the level |1〉, and pulse 4 is an auxiliary
pulse [17]. Figure 4a shows the cooling dynamics for N =
1, whereas in Figure 4b we depict the case of N = 500.
Observe that, contrary to the ground-state cooling, level
n = 0 is very efficiently emptied (by s = 8 pulse). The
difference of population of levels n = 0 and n = 1 is not
enough to provide a bosonic-enhancement factor able to
counterbalance this efficient emptying, and therefore no
relevant many-atom competition is present in this case.
Note, however, that n = 0 is emptied more slowly for
N = 500 than for N = 1. This effect delays slightly the
condensation for the first cycles, but it is not the main
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Fig. 5. Population dynamics of (1, 1), using a sequence of
pulses of detunings s = −18, −9, −4, 8, −19, −10, −5, −3, all
of them with duration 2γ/Ω2. The Lamb-Dicke parameter is
η = 3. The initial distribution is thermal with mean 〈n〉 = 6.
The cases of N = 1 and N = 500 are compared.

cause of the fact that for this case the many-atom cooling
is slower than for N = 1. The main cause is the reduction
of the height of the resonant peak due to the collective
spontaneous emission in the denominator of the rates; as
pointed out previously, it makes the cooling slower. This
reduction in the denominator can be easily estimated by
considering the maximum factor Rml (17):

Rmax
ml ∼

∫ 2π

0

dφ
∫ π

0

dθW(θ, φ)|ηln′0 (k)|2(N+1−δn′,m),

(22)

where n′0 is the condensed state. The maximum value of
expression (22) is for this case 0.48. Therefore, although
the resonant term is still the only relevant, the height of
the resonant peak is now reduced considerably.

Let us consider the two-dimensional case of the con-
densation into (1, 1). We use a sequence s = −18, −9,
−4, 8, −19, −10, −5, −3, all of them with duration
T = 2γ/Ω2. Pulses 1 and 5 are confinement pulses, and
pulses 2, 3, 6 and 7 are pseudo-confinement pulses. Pulse
4 fulfills equation (18), and it is trivial to see that for an
isotropic trap the level (1, 1) of the trap becomes a dark-
state for this pulse. Finally pulse 8 avoid the formation of
undesired unemptied states. Figure 5 shows the condensa-
tion dynamics into (1, 1) for N = 1 and N = 500 atoms.
Observe that contrary to the one-dimensional condensa-
tion into n = 1, the many-atom cooling is now much faster
than for N = 1. The reason can be explained by analyzing
the terms describing the collective spontaneous emission.
Estimating as previously the maximum factor Rml:

Rmax
ml ∼

∫ 2π

0

dφ
∫ π

0

dθW(θ, φ)|ηlxn′x,0(k)|2|ηlyn′y,0(k)|2

×(N + 1− δn′0,m), (23)

we observe the appearance of two Franck-Condon factors
instead of just one. This makes the maximum factor (23)
very much smaller than in one dimension. In particular
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Fig. 6. Population dynamics of n = 2, using a sequence of
pulses of detunings s = −9, 11, −10, −5, all of them with
duration 2γ/Ω2. Two different Lamb-Dicke parameters η = 3
and 3.065 are considered. The initial distribution is thermal
with mean 〈n〉 = 6. In (a) N = 1 is considered whereas in
(b) the case of N = 500 atoms is depicted. Observe that the
cooling for N = 500 is more robust than for N = 1.

for this case the maximum value is 0.048, i.e. ten times
lower than for n = 1 case. This fact allows for a much
rapid condensation into (1, 1), and explains also why the
condensation into (0, 0) in Section 4.1 (Fig. 3) is quicker
for the many-atom case. This effect also makes for the
considered parameters the dipole-dipole shifts negligible
for dimensions higher than one.

Finally, let us present an example which clearly illus-
trates the robustness of the many-atom “Franck-Condon”-
dark-state cooling, with respect to the one-atom case. Let
us consider the one-dimensional cooling into n = 2, using
a sequence s = −9, 11, −10, −5, all of them with duration
T = 2γ/Ω2. The pulses have the same function as for the
n = 1 cooling case. In particular for η = 3.065 s = 11 sat-
isfies condition (19), and therefore is a “Franck-Condon”-
dark-state pulse for n = 2. Figure 6 shows the population
dynamics of n = 2, for the case of η = 3 and η = 3.065.
In Figure 6a we depict the case of N = 1, proving that
a slight deviation from the dark-state condition prevents

the condensation. Figure 6b shows the case of N = 500,
and proves that in the many-atom case it is not necessary
to fulfill exactly the dark-state condition to achieve the
condensation into n = 2. Id est, the many-atom cooling
is (due to the bosonic-enhancement) certainly much more
robust and less restrictive than the one-atom cooling.

5 Two-step model

In this section we present a different model of cooling
than that of reference [17] and that of the first sections
of this paper. Remember that our cooling scheme consists
in the absorption of a sequence of pulses (strictly speak-
ing a pair of Raman pulses). The effective spontaneous
emission is the result of a spontaneous Raman processes
which extract the population of the excited state using a
virtual transition through a third rapidly-decaying level.
So far both processes (absorption plus spontaneous emis-
sion) have been considered simultaneously. In the present
section we study the case in which both processes are con-
sidered separately and consecutively. Id est, the atom is
affected by:

• stimulated absorption laser pulses, which induce
energy-selective transitions |g〉 → |e〉, depopulating all
motional states except the “dark” ones;
• spontaneous emission pulses, which are non-selective,

and repump in a, more or less, uniform way all atoms
into all the accessible motional states.

As in the previous model we are going to demonstrate
that:

• the laser induced condensation into an arbitrary trap
level is possible; i.e. an arbitrary trap level may be
made dark;
• the condensation is robust with respect to changes of

physical parameters; dark states do not have to be
completely dark.

The new model has advantages with respect to the
previous one. In particular, one can avoid the problem
of the broadening of the absorption resonance due to the
collective spontaneous emission in the new model. This
model has also the advantage that the dipole-dipole con-
tribution cancels out exactly. Computationally it presents
also advantages, allowing the analysis of three-dimensional
problems. Last, but not least, it corresponds well to ex-
periments.

The model and notation is exactly the same as previ-
ously. We use the coarse graining in time, and describe the
variations of the density matrix after one absorption and
one spontaneous emission pulse. After such cooling cycle
all atoms are in the ground internal state described by the
density matrix ρ(t). This matrix is diagonal in the Fock
representation corresponding to the bare trap levels.

We assume the absorption pulses of duration τabs are
weak and do not excite many atoms. Their effects can
thus be described by the second order perturbation the-
ory (formally that corresponds to one atom excited at
most). In the absorption step, the dynamics is described
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by the simple von Neumann equation (in interaction pic-
ture with respect to Ĥa):

ρ̇(t) = −i[Ĥlas(t), ρ(t)], (24)

where

Ĥlas(t) =
Ω(t)

2

∑
l,m

ηlm(kL)e−iωLte†l gm + h.c. (25)

with Ω(t) = Ω0f(t), where Ω0 is the maximal effective
Rabi frequency, and f(t) is a temporal envelope of the
pulse. Integrating in time, and iterating up to terms of
the second order with respect to the laser, we obtain:

ρ(t+ τabs) ' ρ(t)− 1
2
[
Hlas, [Hlas, ρ(t)]

]
(26)

In equation (26) we have neglected the first-order terms
respect to the laser, because they decay to zero during the
spontaneous emission step (that is simple to understand
because the corresponding terms lead to off-diagonal ma-
trix elements between the states with one excited and no
excited atoms). Also, in equation (26) we have extended
the integrals from −∞ to +∞ because the absorption
pulse acts only during the interval τabs; therefore, we find:

Hlas =
Ω0

2

∑
l,m

ηlm(kL)f̃(δ − ωe
l + ωg

m)e†l gm + h.c. (27)

where f̃(δ) is the Fourier transform of f(t), which is a
function peaked at δ = 0 with a width ∆δ of the order
of τ−1

abs. We can consider, for example, Gaussian pulses of
the form f(t) = exp(−t2/τ2

abs). We will assume in the fol-
lowing τabs such that the width ∆δ of f̃ is smaller than ω.
Using this last assumption and the fact that the jump op-
erator (14) is purely diagonal in the l index (and therefore
we can neglect the coherences between different excited
states, because they do no contribute to the spontaneous
emission process), we obtain:

ρ(t+ τabs) = ρ(t)−
∑
l,m

Γ abs
lm [g†mgmρ(t)

+ρ(t)g†mgm − 2e†l gmρ(t)g†mel], (28)

where

Γ abs
lm =

Ω2
0

8
|ηlm(kL)|2|f̃(δ − ωe

l + ωg
m)|2 (29)

are the absorption probabilities, which describe the tran-
sitions from the ground state level m to the excited state
level l.

The spontaneous emission step is regulated by the ME
given by equation (12), but without laser, i.e.:

ρ̇(t) = −iĤeffρ(t) + iρ(t)Ĥ†eff + J ρ(t), (30)

with

Ĥeff = −i
∑
l,n

Γ sp
nl elgnρ(t)e†l gn, (31)

J ρ(t) = 2
∑
l,n

Γ sp
nl g
†
nelρ(t)e†l gn, (32)

where

Γ sp
nl = γ

∫
dφ
∫

dθ sin θW(θ, φ)|ηln(k)|2. (33)

The repumping pulses have constant amplitude and du-
ration τsp long enough to depopulate totally the excited
states. On the other hand, remember that (collective)
spontaneous emission rates in the Festina Lente limit are
small in comparison to the trap frequency [16]. We can
formally integrate equation (30), to obtain that after the
spontaneous emission step (i.e. for τsp sufficiently long):

ρ(t+τabs+τsp)=ρ(t)−
∑
lm

Γ abs
lm

[
g†mgmρ(t)+ρ(t)g†mgm

]
+ 4

∫ ∞
0

dτ
∑
mnl

[
Γ sp
ln Γ

abs
lm g†ne−

P
k Γ

sp
kl gkg

†
kτgmρ(t)

×g†me−
P
k Γ

sp
kl gkg

†
kτgn

]
, (34)

where we have employed the fact that at time t all the
atoms are in the ground state. Note, that if Ĥeff in equa-
tion (31) contained a contribution of Ĥdip (real part of
the dipole-dipole interactions), such contributions would
exactly cancel out in RWA in expression (34), provided
ρ(t+ τabs) remained diagonal in the Fock representation.

Equation (34) describes the full cooling cycle, i.e. maps
the diagonal ρ(t) with all atoms in ground state into the
diagonal ρ(t+τabs+τsp) with all atoms again in the ground
state. The last term in the above equation describes the in-
tegral over all possible times τ in which the quantum jump
from the excited state l to the ground state n occurs. The
amplitude of the excited state is damped during the time
τ with the collective rate

∑
k Γ

sp
kl gkg

†
k, which evidently

contain Bose enhancement factors, i.e. is proportional to
occupation numbers plus one of the corresponding occu-
pations of the ground trap levels.

By applying the annihilation and creation operators
to the initial ground Fock density matrix, and by time
integrating, one calculates easily the probability of one
atom to jump from an initial state n to a final state m,
obtaining the rate equation:

Ṅn =
∑
m

Γn←mNm −
∑
m

Γm←nNn (35)

with

Γn←m =
∑
l

2Γ abs
lm Γ sp

nl (Nn + 1− δn,m)∑
n′ Γ

sp
n′l(Nn′ + 1− δn′,m)

· (36)

Observe that these rates are considerably different com-
pared to those described by equation (16). In particular,
although the spontaneous emission is, at it should, still
collective, the broadening of the absorption resonance is
not present here, because the absorption is not affected by
the spontaneous emission. This effect is the main advan-
tage of the present model. In particular Ω is not restricted
to be smaller than 2γ, and that allows the cooling process
to be very much faster.
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Fig. 7. Condensation dynamics into (0, 0, 0), for η = 2.0 and
a sequence of pulses of detunings s = −12, −6, −4, 0, −13,
−7, −5, −1. For all the pulses Ax,y,z = 1 except for s = 0 for
which Az = −2. The initial distribution is thermal with mean
〈n〉 = 6. Dotted and solid lines represent respectively the case
of N = 1 and 500 atoms.

6 Two-step model: Numerical results

Rate equations (35) can be simply simulated using stan-
dard Monte-Carlo procedures. We have performed such
simulations for N = 1 up to N = 500 atoms, in vari-
ous dimensions, and for various cooling strategies. Franck-
Condon factors and trap frequencies have been approxi-
mated using the states of an isotropic trap with frequency
ω. We concentrate here on 3-dimensional cooling. As in
the previous cooling model of [17] and the first sections
of this paper, we consider the cooling beyond the Lamb-
Dicke limit, i.e. for traps for which the Lamb-Dicke pa-
rameter η =

√
ER/~ω is larger than one. We consider

three Raman transitions induced by laser pairs propagat-
ing in directions x, y, and z characterized by three differ-
ent effective Rabi frequencies Ω0f(t)Aj , where Aj=x,y,z
account for difference of intensities or dephasing between
the lasers. It is easy to observe from the form of the
rates, and the expression for Γ abs

lm , that the same dark-
state mechanisms as those discussed in reference [17] can
be applied in the new model, i.e. “Franck-Condon”-dark-
states, and “interference”-dark-states. In the following we
shall apply these dark-state techniques to condense into
different states of the trap.

In Figure 7 we present our result for ground state cool-
ing of 1 and 500 sodium atoms in a three-dimensional
trap with a Lamb-Dicke parameter η = 2, using 20 three-
dimensional energy shells (i.e. 1771 trap levels) for the
calculation. The initial state of the system corresponds to
mean energy 6~ω, and is the same for all the rest of the fig-
ures of this paper. The pulse sequence is s = −12, −6, −4,
0, −13,−7, −5, −1. Ax,y,z = 1, except for s = 0, for which
Ax,y = 1, Az = −2. Pulses 1 and 5 are confining, 2, 3, 6
and 7 pseudo-confining, and 4 and 8 are dark-state cooling
pulses for (0, 0, 0). As in the previous sections the many
body effects introduce one very important element to the
dynamics: the bosonic-enhancement factors, that speed up
the dynamics enormously. The time scale is such that each
cooling cycle must be longer than 2π/ω ' 10−4 s. In such a
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Fig. 8. Condensation dynamics into (1, 1, 1), using a sequence
of pulses of detunings s = −12, −6, −3, 3, −13, −7, −4, −2.
For all the pulses Ax,y,z = 1. The initial distribution is thermal
with mean 〈n〉 = 6. We have depicted with different dashes
and thickness for η = 2.0 and 2.05, the cases of N = 1 and
500 atoms

case, the function f̃ can be taken to be sufficiently narrow
to neglect non-resonant transitions. Therefore 1000 cycles
of cooling correspond to about one second. Cooling of one
atom requires here few seconds, whereas collective cool-
ing takes about 0.1 s. After achieving condensation with
500 atoms, confining pulses can be avoided, a single dark
state pulse can keep the atoms in the condensed state.

In Figure 8 we show results for cooling into the state
(1, 1, 1) using the sequence s = −12, −6, −3, 3, −13, 7,
−4, −2, with Ax,y,z = 1. Here the pulse 4 is a “Franck-
Condon”-dark-state pulse (η2 = s+1), the other are either
confining or auxiliary. First, note that when dark state
condition is fulfilled exactly (η = 2), cooling of a single
atom to (1, 1, 1), although slow, is possible. This cooling
mechanism is, however, very fragile. A tiny perturbation of
the dark state (η = 2.05) makes efficient cooling impossi-
ble. This conclusion does not hold for many atoms though.
As in the previous section, quantum statistics helps to
achieve 100% condensation that is robust with respect to
parameter changes; the results for η = 2 or 2.05 are al-
most indistinguishable, the cooling time is much shorter
than in the 1 atom case, and takes about 1 s.

7 Conclusions

In this paper we have analysed the dynamical cooling
scheme, originally designed for single-atoms, for the case
of N identical bosons in the trap. We have presented the
quantum master equation which describes the dynamics of
the system. We have adiabatically eliminated the excited
states to obtain a set of rate equations. The many-atom
rates are non-linear respect to the occupation numbers
of each trap level. In particular two new effects appear:
bosonic-enhancement factors, and collective spontaneous
emission rates. We have analysed the new statistical
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effects in comparison with the single-atom case, and con-
cluded that for the many-atom case the dark-state con-
ditions are more robust due to the bosonic enhancement.
We have also studied the differences between one- and two-
dimensional problems. Finally, we have presented a differ-
ent model of cooling in which the absorption and spon-
taneous processes occur separately and consecutively. We
have developed the proper master equation (using coarse
graining in time), and developed new rate equations. This
new cooling method, which in fact is usually realized in ex-
periments on Raman cooling, proves to solve several prob-
lems inherent to the first model. Using Monte-Carlo simu-
lations we have demonstrated that the condensation into
an arbitrary state of the trap is possible, robust, and can
be achieved in experimentally feasible traps. It is typically
accompanied by multistability and hysteresis phenomena
which will be discussed in detail elsewhere [19].

We have neglected in our approach atom-atom col-
lisions. We do not think that collisions will change the
picture presented here essentially. Atom-atom interaction
will make effective energy levels in the trap non-harmonic.
Most probably, broader or chirped absorption pulses will
have to be used to assure efficient population transfers.
Collisionally induced population redistribution should not
affect condensate in the (collisionally modified) ground
state (0, 0, 0), since this state corresponds to thermal equi-
librium at very low temperatures. Thermalisation mecha-
nism might destroy condensates in excited states, but that
will depend on time scales. Condensation requires accord-
ing to our calculation seconds, but we have not attempted
to optimize this time; 10 times shorter condensation times
are thus presumably feasible. Such times become shorter
than thermalisation time due to collisions if N is not too
large, and η not too small.

We acknowledge fruitful discussions with J.I. Cirac. Partial
support from the Spanish Dirección General de Investigación
Cient́ıfica y técnica (Grant No. PB95-0955) and from the Junta
de Castilla y León (Grant No. SA 16/98) is acknowledged. This
work has been supported by the EU through the TMR network
ERBXTCT96-0002, and by the Deutsche Forschungsgemein-
schaft under SFB 407.

Appendix A: Developing of the master
equation of the first model

We treat the vacuum electromagnetic modes as a reservoir
(R), whereas the trapped atoms are called the system (S)
[27]. A global density operator χ(t) describes the state of
the system plus reservoir (S⊕R). We define the reduced
density operator ρ(t) for the system S as the trace of χ
over the reservoir degrees of freedom:

ρ(t) = trR[χ(t)]. (A.1)

Our purpose in this appendix is to obtain an expression
for ρ̇(t) from the equation for χ̇(t) after tracing over R.
The dynamics of χ is given by the von Neumann equation,

which in the interaction picture with respect to free evo-
lution of atoms and vacuum electromagnetic modes, takes
the form:

˙̃χ(t) = −i[H̃las(t), χ̃(t)]− i[H̃af(t), χ̃(t)], (A.2)

where the atom-vacuum interaction Hamiltonian has the
form

H̃af(t) = −i
∑
l,m

∑
µ

∫
d3k

√
k

2ε0(2π)3
(d · εkµ)

× ηlm(k)e†l gmakµei(ω
e
l−ωg

m−ω(k)) + h.c. (A.3)

where akµ, a†kµ are the annihilation and creation opera-
tors of a photon mode characterised by a wavevector k,
frequency ω(k), and a polarisation µ, with polarisation
vector εkµ; d denotes the atomic dipole vector character-
ising the consider electronic transition.

Integrating equation (A.2) and substituting in the sec-
ond commutator in equation (A.2):

˙̃χ(t) = −i[H̃las(t), χ̃(t)]− i[H̃af(t), χ(0)]

−
∫ t

0

dt′
[
H̃las(t), [H̃af(t′), χ̃(t′)]

]
−
∫ t

0

dt′
[
H̃af(t), [H̃af(t′), χ̃(t′)]

]
. (A.4)

Up to this point the equation is exact, but quite in-
tractable. Some reasonable approximations are needed:

• the interaction time is assumed to be turned on at
t = 0. At that time no correlation exists between S
and R. Then χ(0) = ρ(0)R0, where R0 is an initial
reservoir density operator l;
• tracing equation (A.4) respect to the reservoir, we ob-

tain:

˙̃ρ(t) = −i[H̃las(t), ρ̃(t)]

−
∫ t

0

dt′trR

{[
H̃las(t), [H̃af(t′), χ̃(t′)]

]}
−
∫ t

0

dt′trR

{[
H̃af(t), [H̃af(t′), χ̃(t′)]

]}
, (A.5)

where we have assumed trR{H̃af(t), R0} = 0 (which
can always be done [27]);
• since the coupling Haf between S and R is assumed to

be very weak, and since R is a very large system virtu-
ally unaffected by its coupling to S, we can extend the
initial factorization to any other time: χ̃(t) = ρ̃(t)R0.
This is the so-called Born approximation;
• in order to trace over the reservoir variables, we will

assume a vacuum statistics of the reservoir, this means
that 〈a†kµa

†
k′µ′〉 = 〈akµak′µ′〉 = 〈a†kµak′µ′〉 = 0,

〈akµa
†
k′µ′〉 = δ(k − k′)δµµ′ . Also 〈akµ〉 = 〈a†kµ〉 = 0,
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and therefore the second term in the RHS of equa-
tion (A.5) vanishes:

˙̃ρ(t) = −i[H̃las(t), ρ̃(t)]

−
∫ t

0

dt′trR

{[
H̃af(t), [H̃af(t′), ρ̃(t′)R0]

]}
;

(A.6)

• Markov approximation: the decay of the reservoir cor-
relation functions is assumed to be very much faster
than the typical time scales for the system dynamics,
and therefore ρ(t) changes insignificantly over the time
taken for the correlation functions to vanish. Then we
can approximate in equation (A.6) ρ(t′) → ρ(t) and∫ t

0
→
∫∞

0
, obtaining the ME in the Born-Markov ap-

proximation:

˙̃ρ(t) = −i[H̃las(t), ρ̃(t)]

−
∫ ∞

0

dt′trR

{[
H̃af(t), [H̃af(t′), ρ̃(t)R0]

]}
.

(A.7)
In our case the Born-Markov approximation is valid,

since the characteristic frequency scales fulfill Nγ, Ω, ω,
|δ| � ωL, ω0, c/L, where L is the typical dimension of the
atomic sample. After some calculation one obtains equa-
tion (3) using the vacuum statistics.
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